A Technique for Performing Electrical Impedance Myography in the Mouse Hind Limb: Data in Normal and ALS SOD1 G93A Animals

نویسندگان

  • Jia Li
  • Wayne L. Staats
  • Andrew Spieker
  • Minhee Sung
  • Seward B. Rutkove
چکیده

OBJECTIVE To test a method for performing electrical impedance myography (EIM) in the mouse hind limb for the assessment of disease status in neuromuscular disease models. METHODS An impedance measuring device consisting of a frame with electrodes embedded within an acrylic head was developed. The head was rotatable such that data longitudinal and transverse to the major muscle fiber direction could be obtained. EIM measurements were made with this device on 16 healthy mice and 14 amyotrophic lateral sclerosis (ALS) animals. Repeatability was assessed in both groups. RESULTS The technique was easy to perform and provided good repeatability in both healthy and ALS animals, with intra-session repeatability (mean ± SEM) of 5% ± 1% and 12% ± 2%, respectively. Significant differences between healthy and ALS animals were also identified (e.g., longitudinal mean 50 kHz phase was 18 ± 0.6° for the healthy animals and 14 ± 1.0° for the ALS animals, p=0.0025). CONCLUSIONS With this simple device, the EIM data obtained is highly repeatable and can differentiate healthy from ALS animals. SIGNIFICANCE EIM can now be applied to mouse models of neuromuscular disease to assess disease status and the effects of therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiologic Biomarkers for Assessing Disease Progression and the Effect of Riluzole in SOD1 G93A ALS Mice

OBJECTIVE To compare electrical impedance myography (EIM) 50 kHz phase to weight, motor score, paw grip endurance (PGE), CMAP amplitude, and MUNE for the identification of disease progression and the effect of riluzole in the SOD1 G93A mouse. METHODS Twenty-three animals received 8 mg/kg/day riluzole in the drinking water starting at 6 weeks of age; 22 animals served as controls. Weight, moto...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

Gene Therapy for Amyotrophic Lateral Sclerosis: An AAV Delivered Artifical MicroRNA Against Human SOD1 Increases Survival and Delays Disease Progression of the SOD1<sup>G93A</sup> Mouse Model: A Dissertation

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motor neurons, resulting in progressive muscle weakness, atrophy, paralysis and death within five years of diagnosis. About ten percent of cases are inherited, of which twenty percent are due to mutations in the superoxide dismutase 1 (SOD1) gene. Since the only FDA approved ALS drug prolongs survi...

متن کامل

Downregulation of the potassium chloride cotransporter KCC2 in vulnerable motoneurons in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.

The balance between excitatory and inhibitory synaptic inputs is critical for the physiological control of motoneurons. The maintenance of a low-intracellular chloride concentration by the potassium chloride cotransporter 2 (KCC2) is essential for the efficacy of fast synaptic inhibition of mature motoneurons in response to the activation of ionotropic γ-aminobutyric acid A and glycine receptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012